TEMPERATURE FIELD OF A TWO-LAYERED PLATE
WITH TIME-VARYING HEAT-TRANSFER CONDITIONS

O. T. Iltchenko UDC 536.244

The investigation results have shown that the solution to the heat conduction problem in a
double-layer plate with time-variable boundary conditions may be obtained numerically

if the solutions to the problem at constant boundary conditions are known. It is also shown
that the method [8] is applicable for solving the problem on a nonstationary temperature
field of the system of bodies at time-variable boundary conditions.

A solution of the problem of a two-layered plate with the layer of lower thermal conductivity facing
the heating medium and the free side of the other layer assumed to be adiabatic is given in [1, 2]. In [3]
the solution of [2] is extended to the case in which the heat input is on the side of greater thermal con-
ductivity and the free side of the second layer is adiabatic. The roots of the characteristic equation are
found, and the problem is solved completely. The solution and characteristic equation given in [4] are
identical with those in [3] except that only the special case is treated in which the layer thicknesses are
so small that the solution can be limited to the first few terms of the series,

The results in [4] stating that in the case of a thin layer of thermal insulation material the tempera-
ture distribution in the metal layer is a function of the time only enabled the authors of [5, 6] to solve the
problem of the temperature distribution along the insulation thickness.

The solution of the problem of the temperature field in a two-layered plate with heat transfer at both
boundaries is discussed in [7]. The solution and characteristic equation of [7] revert to those of [3] under
the assumption of zero heat transfer at one of the boundaries (Bipy = 0).

In all of the papers cited thus far, however, special cases of the problem of the nonstationary tem-
perature field in a two-layered plate have been investigated.

In its most general context the problem for a two-layered plate with layer thicknesses 6; and 6, may
be stated as follows:
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8 - We now show thatthe stated problem can be solved
%)&} by the method of [8], according to which the non-
96— - S stationary temperature field of a two-layered plate
_ : 5 for time-varying functions hy(7), hy(7), te, (7), and
/ ;' te, (7) is easily obtained if the solution of the problem
- for constant boundary conditions, i.e., a solution
04 A //; of the type in [7], is known.
4 The determination of the roots of the charac-
/ teristic equation in [7] is readily expedited with pre-
1 sent-day computer techniques. Nevertheless, as it is
0 % ) w o w2 B only necessary to demonstrate the legitimacy of ap-

plying the method of [8] to the solution of the tempera-
ture field problem for a two-layered plate under time-
varying boundary conditions, we merely use the solu~
tion of [3]. We therefore consider the temperature
field problem for a two~layered plate subject to time-
varying heat-transfer conditions at one boundary, con-
sidering the second boundary to be adiabatic.

Fig. 1. Functions ® = f(Bi) determined from
the parameter Fo, for a point on the surface of
the higher-thermal-conductivity layer, x/9,
=1; p=0.1:1) Fo, = 0.0116; 2) 0.0348; 3) 0.058;
4) 0.087; 5) 0.116; 6) 0.174; 7) 0.232; 8) 0.29; 9)
0.406.

The results of a calculation of the temperature variation at individual points of the two-layered plate
by the method of [8] for various laws governing the variation of the boundary conditions are compared with
electrosimulation (modeling) data for the same problems ona USM-1 analog computer equipped with a
section for analog modeling of the time-varying values of the function h, (7).

We consider the problem of the nonstationary temperature field of two-layered plates composed of a
highly thermal-conducting material and an insulation material with the following physical characteristics:
M =386.7W/m-deg; A, =0.227 W/m-deg; ¢; = 0.46-10° J/kg - deg; ¢, =0.734 -10% J/kg - deg; v, = 802 kg
/m3; v, =81.5 kg/ mb.

The plate thicknesses were chosen so that, in the notation of [3], the first two-layered plate would
have parameters p = 0.1 and ¢ = 0.01, corresponding to 6; =0.181 m and 8, = 0.1 m. The second two-layered
plate had parameters p = 1.0 and £ = 0.001, corresponding to 6; = 0.0181 m and &, = 0.1 m.

The materials and thicknesses of the layers were especially chosen to permit the values given in
[3] for the roots of the characteristic equation to be used. However, since the roots of the characteristic
equation were found for values of £ =1/Bi over rather large intervals, it is convenient for the analytic
points to construct ® = f(Bi) from the parameter Fo, so as to beable subsequently to determine ® = f(Fo,) from
the parameter Bi according to the known values of ® for fixed values of Fo, (Fig. 3).

The boundary and initial conditions for the regimes in which the analytic values calculated by the
method of [8] were compared with the electrosimulation data at individual points of the two types of two-
layered plates are given in Table 1, The results of a comparison of the temperature variations obtained
at certain points of the two-layered plates by the approximate numerical method and electrosimulation on
the USM-~1 are given in Table 2.

TABLE 1. Summary of Boundary and Initial Conditions in the
Apalyzed Regimes

834 1y
o | Heat-transfer intensity [Law of temperature variation of the - .E_‘:; sa |o =
En law, Bij = f(Foy) medium, te, = ¢ (Fop) "g 82 &g B _§
9 dag| g 2 E
2 QoglHald s
1| Bi= 0,1 exp(3Foy) . = 120 — 60 exp (— 4Fo,) - 1,0 0,1 289
2 | Bi = exp (3Fo0,) te = 120 — 60 exp (— 4Fo,) 0,667 0,1 | 289
3| Bi=0,1 exp (3Fop) fe = 1000 [1 —exp (— 0,5F0g)] +f  [1,0 | 0,1 | 298
4 | Bi = exp (3Foy) fo = 1000 [1 — exp (— 0,5F0,)] +2¢ |0,667{ 0,1 | 298
5 | Bi = exp (3Fo,) te = ty [3 Fo, -+ exp (3Foy)] 0,667 0,1 | 323
6 | Bi = 0,1 exp (3F0,) te =ty [3 Foy - exp (3F0,)] 1,0 0,1 | 323
7 | Bi = exp (3F0,) t. =473 °K 0,667 0,1 | '273
8 | Bi=0,! exp (3Foy) te = 120 — 60 exp (— 4Fo,) 0,33 | 1,0 | 289
9 | Bi = 0,1 exp (3Foy) te = 4530 °K 0,667 1,0 350
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We recall that, as shown in [8], the temperature variation at any point of a body under variable
boundary conditions can be obtained as the sum of the solutions (subscript f = "fixed")

8 (Bi, Fo)[**"*? — 8 (Bi;, Fo,) - © (Bi,, Fo,)

0<Fo,<Fo, (AT) Fos (T, f' <Fo,<Foq (T, {AT)

+ ©(Bi, Fo) + ... -+ ©(Bi,, Fo,)
Fo, (T, <FopFos (T, ¢ +AT) Fo,(r(n__”f)<FOg<Fo,(r(n__l)f—l-A1:) s (3)
if the functions Bi = f(T) and t; = ¢(7) are replaced by piecewise step functions and the lower limits of Fo,

in each interval of constant Biy, are determined from the conditions guaranteeing continuous differentiability

of the solution.

A detailed sample calculation of the temperature variation at the point x/6; = 1.0 in regime 1 of Table
1 is presented in Table 3.

The replacement of the continuous functions Bi = (1) and [te() — t;3] by piecewise step functions for
unequal intervals of constant Biy, and (t, — t)) makes it possible in certain zones to obtain a more com-
plete picture of how the variations of Bi and t, are taken into account in the solution of the problem.

From the quantity @ie at the end of each conditional interval of constant Biy, and (tci —t;) we deter-
mine the value of the temperature at the analytic point at given times (see Table 2) as
t,= 0 (t,—b)+ 1.

Simultaneously we find the temperature values obtained at the analytic points by modeling of the problem
on an analog computer according to the relation

b=Up (2™ — 1) + 1, .

An analysis of the results given in Tables 2 and 3 permits us to state that the method described in (8]
for the approximate numerical solution of the problem of the nonstationary temperature field under time-
varying boundary conditions is also applicable to the calculation of the temperature field of a system of
bodies when solutions have been found for the problem under constant boundary conditions.

NOTATION

a =M/ ¢y,

ay =N/ Yy are the thermal diffusivities of the high- and low-thermal-conductivity layers;

hy (1) = ay(M/ N,

ho (1) = g(T)/ Ny are the heat-transfer coefficients at the boundaries of the high- and low-conductivity
layers;

tci (), tc.z m * are the temperature of medium at the side of highly heat-conducting and less heat-
conducting layers;

p = cav90,/ 171013

& = M0/ Mby;

AT is the interval of constancy of Bim and te;;

Fo, =a,7/ 68 is the Fourier criterion;

Bi =h4, is the Biot criterion;

UM is the potential measured at an analytic point of the model at certain times;

tglax is the maximum temperature of the medium in the investigated problem;

tg is the initial temperature of the body.
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